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Abstract
We introduce a composition of quantum states of a bipartite system which
is based on the reshuffling of density matrices. This non-Abelian product is
associative and stems from the composition of quantum maps acting on a simple
quantum system. It induces a semi-group in the subset of states with maximally
mixed partial traces. Subadditivity of the von Neumann entropy with respect
to this product is proved. It is equivalent to subadditivity of the entropy of
bistochastic maps with respect to their composition, where the entropy of a map
is the entropy of the corresponding state under the Jamiołkowski isomorphism.
Strong dynamical subadditivity of a concatenation of three bistochastic maps
is established. Analogous bounds for the entropy of a composition are derived
for general stochastic maps. In the classical case they lead to new bounds for
the entropy of a product of two stochastic matrices.

PACS numbers: 02.10.Ud, 03.67.−a, 03.65.Yz

1. Introduction

General quantum dynamics are described by quantum stochastic maps, also called quantum
channels or quantum operations. It is therefore crucial to investigate their properties in order
to understand admissible dynamics in a quantum state space. The Jamiołkowski isomorphism
[7, 18] associates with any quantum stochastic operation a quantum state acting on an extended
space. Up to normalization, this state is nothing else than the dynamical or Choi matrix of the
map. Thus the features of a quantum map are encoded in a state.

The spectral decomposition of the Jamiołkowski state yields a canonical Kraus
decomposition of the map, i.e. realizes the map in terms of measurement operators. For
a unitary evolution, the corresponding state is pure and the Kraus form consists of a single
unitary operator. For the completely depolarizing channel, the state is maximally mixed and
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the Kraus decomposition consists of many terms. The degree of mixing of the measurement
operators required to construct a quantum map by its canonical Kraus form can therefore
be estimated by a quantity like the entropy of the map which is actually the entropy of the
associated state. Thus this entropy vanishes for a unitary evolution and reaches its maximal
value for the completely depolarizing channel.

The aim of this paper is to analyse properties of the composition of stochastic maps
[12]. Using the subadditivity of entropy for composite systems we prove an analogous
dynamical subadditivity for bistochastic maps, i.e. maps which preserve the identity, see (52).
A similar inequality proved for the concatenation of three bistochastic maps may be called
strong dynamical subadditivity (69). Dynamical subadditivity generalizes to general stochastic
maps by adding an extra term which vanishes for bistochastic maps. Restricting to diagonal
states we obtain bounds for the entropy of the product of two classical stochastic matrices, see
(88). This generalizes a recent result of Słomczyński on entropy of a product of bistochastic
matrices [15].

Composition of quantum maps induces an action in the space of quantum states on a
bipartite system. We analyse properties of this action which allows us to construct a semi-
group in the space of Hermitian matrices. Composition of states induces also a semi-group
structure in the set of positive definite operators on a bipartite system whose partial traces are
proportional to the identity.

The main tools are coupling techniques, which associate with quantum maps states on
composite systems, combined with subadditivity and strong subadditivity of quantum entropy.
The explicit constructions that we use are related to similar constructions of Lindblad and
techniques used in studying quantum dynamical entropy in the sense of [1]. There are also
connections with quantum coherent information and inequalities as the quantum information
data processing inequality, see [14].

The paper is organized as follows. In section 2 the necessary properties of quantum states
and quantum maps are reviewed. In particular we consider the case of quantum operations
with a diagonal dynamical matrix and show that any such stochastic or bistochastic quantum
map reduces to a stochastic or bistochastic matrix acting on classical probability vectors. The
notion of composition of states is introduced in section 3 where some of its properties are
analysed. In section 4 we analyse the entropy of maps and formulate dynamical and strong
dynamical subadditivity for compositions of bistochastic maps. Furthermore we discuss
analogous results in a more general case of stochastic maps.

2. Quantum states and quantum maps

2.1. Quantum dynamical matrices

Let ρ denote an N-dimensional density matrix, i.e. a Hermitian, positive operator, satisfying
the trace normalization condition Tr ρ = 1. The expectation value of an observable X, i.e. an
N-dimensional matrix, is given by the usual relation

〈X〉 = Tr ρX. (1)

Such expectation functionals are called states. We shall in what follows identify 〈 〉 with its
corresponding ρ. Let DN denote the set of generally mixed quantum states acting on the
N-dimensional Hilbert space HN . It is a convex, compact set of real dimensionality N2 − 1.
In the case of a qubit, i.e. N = 2, the space of mixed states is the Bloch ball, D2 = B3 ⊂ R

3.
More generally, there is a one to one correspondence between arbitrary, i.e. not necessarily
positive linear functionals F on the observables and N-dimensional matrices ρ

F(X) = Tr ρX. (2)

2
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General quantum maps, sometimes called super-operators, are linear transformations
either of the observables (Heisenberg picture) or of the functionals on the observables
(Schrödinger picture). In this paper we shall mostly use the Schrödinger picture and denote
such quantum maps by �. The adjoint �† of a super-operator � is given by

�†(ρ) = (�(ρ∗))∗, (3)

where star denotes the Hermitian adjoint.
Fixing a basis in HN we identify an N-dimensional matrix ρ with a vector of dimension

N2 just by writing the entries of ρ in lexicographical order. So the entry ρmµ is placed on the
((m − 1)N + µ)th row. A general linear quantum map,

ρ �→ ρ ′ := �(ρ), (4)

may be described by a matrix of size N2 still denoted by �,

ρ ′
mµ = �mµ

nν
ρnν, (5)

where Einstein’s summation convention is taken. We use the following notation for matrix
elements of an operator acting on a composed Hilbert space and represented in a product basis,

�mµ
nν

:= 〈m ⊗ µ|�|n ⊗ ν〉. (6)

Another convenient way to describe quantum maps is to use the Choi-Jamiołkowski
encoding, also called dynamical matrix or Choi matrix D� [16]. It amounts to a reordering of
matrix elements of �

D� ≡ �R so that (D�)mn
µν

= (�R)mn
µν

= �mµ
nν

. (7)

Let us consider the projector on the maximally entangled state |ψ+〉 := 1√
N

∑N
m=1 |m〉 ⊗ |m〉

P+ := |ψ+〉〈ψ+| = 1

N

∑
mµ

|m〉〈µ| ⊗ |m〉〈µ|. (8)

We can in a similar way as above identify P+ with a vector in a space of dimension N2 × N2.
Its entries are

(P+)mnµν = 1

N

∑
kκ

(|k〉〈κ| ⊗ |k〉〈κ|)mnµν = 1

N

∑
kκ

(|k〉〈κ|)mµ(|k〉〈κ|)nν

= 1

N

∑
kκ

δkmδκµδknδκν = 1

N
δmnδµν. (9)

We now compute

((� ⊗ id)(P+))mnµν = (� ⊗ id) mnµν
m′n′µ′ν ′

(P+)m′n′µ′ν ′

= � mµ
m′µ′

δnn′δνν ′(P+)m′n′µ′ν ′

= 1

N
� mµ

m′µ′
δnn′δνν ′δm′n′δmu′ν ′

= 1

N
�mµ

nν
= 1

N
(D�)mn

µν
. (10)

So we see that, up to a factor N,D� is the action of id ⊗ � on the one-dimensional projection
P+ on the maximally entangled state. The map � �→ D� is linear and it intertwines adjoints

D�† = (D�)∗. (11)

Equation (7) may be considered as the definition of the reshuffling transformation, written
� → �R, which is defined for any matrix � acting on the Hilbert space HN2 = HN ⊗ HN

3
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[18]. It should be stressed that the reshuffling operation depends on the distinguished basis in
HN that we have used.

Choi’s theorem [4], proves that a map � is completely positive (CP), which means that the
extended map � ⊗ id is positive for any size of the extension, if and only if the corresponding
dynamical matrix D� is positive, D� � 0. The eigenvalue decomposition of the dynamical
matrix of a CP map � leads to the canonical Kraus form [8] of the map

�(ρ) =
N2∑
α=1

AαρA†
α, (12)

where the Kraus operators are orthogonal

〈Aα|Aβ〉 = Tr A†
αAβ = dαδαβ, (13)

so that the non-negative weights dα become the eigenvalues of the dynamical matrix D�.
Hence, in this (almost) canonical form the number of Kraus operators does not exceed N2.

A quantum map � is trace preserving (TP) if Tr �(ρ) = Tr ρ for any ρ. The
corresponding dynamical matrix D� acts on the composite Hilbert space HN2 = HA ⊗ HB

and, in terms of the dynamical matrix, trace preserving means that

TrAD� = 11. (14)

This implies in particular that Tr D� = N . Completely positive trace-preserving maps (CPTP
maps) are often called quantum operations or quantum stochastic maps. Since the dynamical
map of a quantum operation � is positive and normalized as in (14) the rescaled matrix 1

N
D�

is a state on the extended Hilbert space HN ⊗ HN , see [7, 3]. We shall say that

ς := 1

N
D� (15)

is the Jamiołkowski state associated with �. A quantum map is called unital if it leaves the
maximally mixed state invariant. This is the case iff

TrBD� = 11, (16)

a condition dual to (14). A CP quantum map which is trace preserving and unital is called
bistochastic. A composition of bistochastic maps is still bistochastic.

2.2. Classical case—diagonal dynamical matrices

Let us diagonalize a density matrix. The elements on the diagonal may be interpreted as a
classical probability vector P with components pi = ρii , i.e. pi � 0 and

∑N
i=1 pi = 1. In a

similar way a quantum map � reduces to a classical one if the dynamical matrix D = �R is
diagonal, Dab

cd
= Tabδacδbd .

Reshaping the diagonal of the dynamical matrix which has dimension N2 one obtains a
matrix T of dimension N

T = T (�) with Tij = � ii
jj

, (17)

with no summation performed. Positivity of D implies that all elements of T are non-negative.
Furthermore, the partial trace condition (14) implies that the matrix T is stochastic since∑N

i=1 Tij = 1 for all j = 1, 2, . . . , N . In fact, the action of a diagonal dynamical matrix D on
diagonal density matrices reduces to a Markov transition of a probability vector, P ′ = T P .

If, additionally, the complementary partial trace condition (16) holds, then the matrix T is
bistochastic

∑N
j=1 Tij = 1 for all i = 1, 2, . . . , N and the uniform vector P∗ := (

1
N

, . . . , 1
N

)
4
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is invariant under multiplication by a bistochastic matrix T. Hence quantum stochastic and
bistochastic maps acting in the space DN of quantum states can be considered as a direct
generalizations of stochastic and bistochastic matrices, which act on classical probability
vectors.

Note that the quantum identity map, � = id, is not classical, since the dynamical matrix
D = �R is not diagonal, and the off-diagonal elements of ρ are preserved. On the other hand,
the coarse-graining map,

�CG(ρ) :=
N∑

i=1

|i〉〈i|ρ|i〉〈i| (18)

which strips away all off-diagonal elements of a density operator is described by a diagonal
dynamical matrix. The corresponding stochastic matrix is the identity, T (�CG) = 11, since all
diagonal elements of ρ remain untouched under the action of (18). Let us also distinguish the
flat stochastic matrix T∗ whose elements are all equal, (T∗)ij = 1

N
. It is a bistochastic matrix

which maps any probability vector P into the uniform one, T∗P = P∗.

2.3. Entropies of maps and states

To any normalized probability vector P of size N we may associate its Shannon entropy

H(P ) := −
N∑

i=1

pi ln pi =
N∑

i=1

η(pi), (19)

where we have introduced the function

η(x) := −x ln x for x > 0 and η(0) := 0. (20)

This entropy is a measure for the mixedness of a probability vector. In a similar way the
degree of mixing of a quantum state ρ is characterized by its von Neumann entropy

S(ρ) := −Tr ρ ln ρ = Tr η(ρ), (21)

equal to the Shannon entropy of its spectrum. The entropy varies from zero for a pure state to
ln N for the maximally mixed state, ρ∗ = 1

N
11.

The density matrix ς = D�/N associated with a quantum stochastic map � depends on
the basis that is used to compute the entries of �, see (5). A change of basis in HN corresponds
to a unitary transformation of D�, therefore the eigenvalues of D� do not change. It is then
natural to consider the von Neumann entropy of the bipartite state associated with � by the
Jamiołkowski isomorphism.

Definition 1. Let � be a trace-preserving completely positive map with associated
Jamiołkowski state ς = 1

N
D�. The entropy of the quantum operation � is defined to be

S(�) := S(ς) = S

(
1

N
D�

)
. (22)

Since the state ς = D�/N acts on the extended Hilbert space HN ⊗ HN the entropy of the
map varies from zero for a unitary dynamics to 2 ln N for a completely depolarizing channel
�∗, which sends any state to the maximally mixed state, �∗(ρ) = ρ∗, see [18].

Let us now move to a classical discrete dynamics in the probability simplex. The following
definition of entropy of a stochastic matrix introduced in [15, 19]

HI(T ) :=
N∑

j=1

pI
j H(tj ), (23)

5
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is decorated by a label ‘I’, as it is based on an invariant state of a matrix, P I = T P I. Here
tj denotes the j th column of a transition matrix T, so (23) represents the average Shannon
entropy of columns of T weighted by its invariant state P I.

To demonstrate a direct relation to the quantum dynamics we shall use a simplified version
of the entropy of a transition matrix

H(T ) := − 1

N

N∑
i=1

N∑
j=1

Tij ln Tji . (24)

Observe that for any bistochastic matrix the uniform vector is invariant, P I = P∗, so pI
j = 1

N

and both definitions of entropy do coincide. Both quantities, HI(T ) and H(T ), vary from zero
to ln N .

Using equation (17) one concludes that for any stochastic map � represented by a diagonal
dynamical matrix D� its entropy is up to a constant equal to the entropy of the associated
stochastic matrix,

S(�) = H(T (�)) + ln N. (25)

The constant ln N is due to the 1
N

normalization factor in front of the dynamical matrix, see
definition (22). Although in general the entropy of a quantum map belongs to [0, 2 ln N ], the
entropy of the maps represented by diagonal D and corresponding to stochastic matrices
varies from ln N to 2 ln N . Among this class the minimal entropy characterizes the
coarse-graining map (18), for which T (�CG) = 11, and S(�CG) = ln N . The maximum
is achieved for the completely depolarizing channel, �∗, since T (�∗) = T∗ so that
S(�∗) = H(T∗) + ln N = 2 ln N .

2.4. Entropy exchange and Lindblad’s theorem

Consider a CP map � represented in its canonical Kraus form (12). For any state ρ ∈ DN

define a positive operator σ̂ = σ̂ (�, ρ) acting on the extended Hilbert space HN2 ,

σ̂αβ := Tr ρA
†
βAα, α, β = 1, . . . , N2. (26)

If the map � is stochastic, then the operator σ̂ is also normalized in the sense that

Tr σ̂ =
N2∑
α=1

Tr ρA†
αAα = Tr ρ = 1 (27)

and so it represents a density operator in its own right, σ̂ ∈ DN2 . In particular, if ρ = ρ∗ = 1
N

11
then, using the canonical Kraus decomposition (12), one shows that

σ̂ (�, ρ∗) = 1

N
D� = ς. (28)

The von Neumann entropy of σ̂ depends on ρ, and equals S(�), as defined above, if ρ is the
maximally mixed state.

Auxiliary states σ̂ in an extended Hilbert space were used by Lindblad to derive bounds
for the entropy of the image ρ ′ = �(ρ) of an initial state under the action of a CPTP map.
Lindblad’s bounds [10]

|S(σ̂ ) − S(ρ)| � S(ρ ′) � S(σ̂ ) + S(ρ) (29)

are obtained by defining yet another density matrix in the composite Hilbert space HN ⊗HM :

ω :=
M∑

α=1

M∑
β=1

AαρA
†
β ⊗ |α〉〈β|, (30)

6
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where M = N2 and {|α〉} is an orthonormal basis in HM . Computing partial traces one finds
that

TrNω = σ̂ and TrMω = ρ ′. (31)

It is possible to verify that S(ω) = S(ρ), and so one arrives at (29) using subadditivity of the
entropy and the triangle inequality [2]. These results can be obtained using the first part of the
proof of theorem 1.

If the initial state is pure, that is if S(ρ) = 0, we find that the final state ρ ′ has entropy
S(σ̂ ). For this reason S(σ̂ ) was called the entropy exchange of the operation � by Shumacher
[13]. In that work an alternative representation of the entropy exchange was given

S(σ̂ (�, ρ)) = S((id ⊗ �)|ϕ〉〈ϕ|), (32)

where |ϕ〉 is an arbitrary purification of the mixed state, TrB |ϕ〉〈ϕ| = ρ. To prove this useful
relation it is enough to find a pure state in an extended Hilbert space, such that one of its partial
traces gives σ̂ and the other one the argument of the entropy function at the right-hand side
of (32).

A kind of classical analogue of the quantum entropy bound (29) of Lindblad was proved
later by Słomczyński [15]. He introduced the notion of entropy of a stochastic matrix T with
respect to an arbitrary probability distribution P = {pi}Ni=1,

HP (T ) :=
N∑

i=1

piH(�ti) �ti = (T1i , T2i , . . . , TNi). (33)

This quantity—an average entropy of columns of matrix T weighted by probability vector
P—allows us to obtain the bounds for the entropy of a classically transformed state, P ′ = T P ,

HP (T ) � H(P ′) � HP(T ) + H(P ). (34)

These bounds look somewhat similar to the quantum result (29) of Lindblad, but a careful
comparison is required. Applying the definition (26) of the auxiliary state σ̂ to the classical
case of a diagonal state, ρii = piδij and a diagonal dynamical matrix D we find

S(σ class) = HP (T ) + H(P ), (35)

where T = T (DR) is the classical stochastic matrix given by (17). Substituting this result into
the Lindblad bound (29), and renaming ρ and ρ ′ into P and P ′ we realize that the argument of
the absolute value in the lower bound reduces to HP (T ) and is not negative, so we arrive at

HP (T ) � H(P ′) � HP (T ) + 2H(P ). (36)

The lower bound coincides exactly with the result (34) of Słomczyński. The upper bound is
weaker (note the presence of the term 2H(P ) instead of H(P )), but it holds in general for all
quantum maps, while (34) is true for classical dynamics only.

3. Composition of maps and composition of states

We first recall some properties of the reshuffling transformation of a matrix as defined in (7).
Reshuffling does not preserve the spectrum nor the Hermiticity of a matrix. It is an involution,
since performing this transformation twice returns the initial matrix, (XR)R = X.

Using the Jamiołkowski isomorphism the composition of maps acting on a single quantum
system can be used to define a composition between quantum states of a bi-partite system, in
fact, this composition extends to arbitrary matrices.

7
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Definition 2. The reshuffling operation (7) defines a composition between arbitrary matrices
σ1 and σ2 on a composite system HN ⊗ HN

σ1  σ2 := (
σ R

1 σ R
2

)R
. (37)

For stochastic matrices obtained by reshaping two diagonal density matrices T1 = T
(
σ R

1

)
and T2 = T

(
σ R

2

)
according to (17), the composition of the diagonal states returns the usual

multiplication of stochastic matrices,

T ((σ1  σ2)
R) = T

(
σ R

1

)
T

(
σ R

2

) = T1T2. (38)

Using the definition of reshuffling we see that generally (DR)2 differs from (D2)R.
Therefore the composition performed on two copies of a state σ differs from its square

σ2 := σ  σ �= σ 2. (39)

3.1. Properties of the composition

Lemma 1. Let X and Y denote two matrices of size N2.

If X � 0 and Y � 0 then X  Y = (XRY R)R � 0. (40)

Proof. Denoting by � and � the completely positive maps with corresponding dynamical
matrices X and Y we see that X  Y is the dynamical matrix of the composed map � ◦ �.
Since the composition of two completely positive maps yields again a completely positive
map [3], we infer (40). �

Proposition 1. The set of all operators acting on a composite Hilbert space HN ⊗ HN ,
equipped with the composition law (), is a non-Abelian associative semi-group. Moreover,
if σ1 and σ2 are Hermitian operators on HN ⊗ HN then also σ1  σ2 is Hermitian. Therefore
the set of all Hermitian operators on HN ⊗ HN is a non-Abelian associative subsemi-group.

Proof. Let P+ denote the projector on the maximally entangled state. Since (P+)
R = 11, this

operator plays the role of the neutral element of the composition. The composition  is non-
Abelian, σ1  σ2 �= σ2  σ1, because the composition of quantum maps is not commutative.
It is on the other hand associative (σ1  σ2)  σ3 = σ1  (σ2  σ3), since the composition of
maps is.

It remains to prove that σ1  σ2 is Hermitian if σ1 and σ2 are. Let � be a super-operator
associated with D� through the Jamiołkowski isomorphism, then (D�)∗ = D�† . Moreover,
for the two super-operators � and � we have

(� ◦ �)†(X) = (� ◦ �(X∗))∗ = (�(�(X∗)))∗ = �†((�(X∗))∗) = (�† ◦ �†)(X). (41)

Using

D�◦� = D�  D� (42)

completes the proof. �

Restricting our attention to the set DN2 of quantum states on a composite system, we see
that this algebraic structure breaks down since the trace condition, Tr σ = 1, is not preserved
under composition. However, one may overcome this difficulty by selecting a certain subset
of quantum states. Thus consider the subset DI

N2 of density matrices of a composite system

8
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HA ⊗ HB of size N2 such that their partial trace over the first system is the maximally mixed
state

DI
N2 :=

{
σ ∈ DN2 : TrAσ = 1

N
11

}
. (43)

With respect to the Jamiołkowski isomorphism these states correspond to the trace-preserving
maps. Since a composition of any two trace-preserving maps preserves the trace we infer that
the composition (37) acts internally in the set DI

N2 .

Proposition 2. The set of all operators acting on the Hilbert space HN of a bipartite system
such that their left marginal is proportional to the identity, equipped with the composition 
is a non-Abelian associative semi-group.

It is convenient to distinguish another composition sub-algebra by defining the set of
states with both marginals proportional to the identity,

DII
N2 :=

{
σ ∈ DI

N2 : TrBσ = 1

N
11

}
. (44)

Due to condition (16) this semi-group is generated by compositions of bistochastic maps.

3.2. Idempotent states

Consider the state σ of a bipartite system obtained by extending an arbitrary state ρ by the
maximally mixed state

σ := 1

N
ρ ⊗ 11. (45)

This state is proportional to the dynamical matrix D of the operation �ρ , which acts as a
complete single-step contraction, sending any initial state ω into ρ,

σ = 1

N
D�ρ

, where �ρ(ω) := ρ (46)

for any ω ∈ DN . To show this let us start with the dynamical matrix of this map,
Dmn

µν
= ρmµδnν . Writing out the matrix entries of

ω′ := �ρ(ω) = DRω = (ρ ⊗ 11)Rω (47)

in the standard basis we obtain the desired result

ω′
mµ = Dmn

µν
ωnν = ρmµ(Tr ω) = ρmµ. (48)

A state σ of an algebra is called idempotent if σ  σ = σ . Hence any state of the form
(45) is idempotent, since the single-step contracting map �ρ applied for the second time does
no longer influence the system, �ρ ◦ �ρ = �ρ .

4. Entropy of a composition

In this section, we analyse the behaviour of the entropy of a quantum operation under
composition. The bounds (34) on the increase of entropy of probability vectors under discrete
dynamics allowed Słomczyński to prove the subadditivity relation [15, 19]

HI(T1) � HI(T2T1) � HI(T1) + HI(T2), (49)

9
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provided both stochastic matrices T1 and T2 have the same invariant state, P I
1 = P I

2 . Restricting
our attention to the case of bistochastic matrices for which P I

1 = P I
2 = P∗ = {

1
N

, . . . , 1
N

}
we

use (24) instead of (23) and drop the label ‘I’ in the subadditivity relation to get

H(T1) � H(T2T1) � H(T1) + H(T2). (50)

Considering a product of three bistochastic matrices Słomczyński proved [15] a strong
subadditivity relation for classical dynamics,

H(T3T2T1) + H(T2) � H(T3T2) + H(T2T1). (51)

4.1. Dynamical subadditivity and strong subadditivity for bistochastic maps

Motivated by the classical results above we formulate and prove their quantum counterparts.

Theorem 1 (Dynamical subadditivity for bistochastic quantum operations). Let �1 be a
bistochastic quantum operation and �2 a general stochastic quantum map then their entropies
satisfy the subadditivity inequality

S(�2 ◦ �1) � S(�1) + S(�2). (52)

If both �1 and �2 are bistochastic then

max({S(�1), S(�2)}) � min({S(�1 ◦ �2), S(�2 ◦ �1)}). (53)

An equivalent statement of (52) and (53) is the triangle inequality for composition

max({S(σ1), S(σ2)}) � S(σ1  σ2) � S(σ1) + S(σ2), (54)

where σ1, σ2 ∈ DII
N2 and the set DII

N2 has been defined in (44), and the same bounds hold for
S(σ2  σ1).

Proof. (i) We first show the upper bound (52).
Let � be a stochastic quantum operation, generally not bistochastic, with Kraus form

�(ρ) =
K∑

α=1

CαρC†
α. (55)

Introduce a map from HN to HN ⊗ HN ⊗ HK as follows: fix an orthonormal basis {|α〉} in
HK and let

Fϕ :=
K∑

α=1

(Cαϕ) ⊗ |α〉, (56)

The adjoint map acts as

F †ϕ ⊗ |α〉 = C†
αϕ (57)

and one checks that

F †Fϕ = F †
K∑

β=1

(Cβϕ) ⊗ |β〉 =
K∑

β=1

C
†
βCβϕ = ϕ, (58)

since � is trace preserving. Therefore F is an isometry. It follows in particular that, for
an arbitrary N-dimensional matrix ρ, FρF † and ρ have up to multiplicities of zero the same
eigenvalues.

10
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Using F we can express the Lindblad operator ω, see (30), as

ω = FρF † =
K∑

α,β=1

CαρC
†
β ⊗ |α〉〈β|. (59)

The operator ω is a density matrix on the composite system HN ⊗ HK . If the initial state
is maximally mixed, ρ = ρ∗, taking the partial trace over the first subsystem we obtain the
following density matrix of the ancilla E = HK ,

ρ = TrNω = σ̂ (�, ρ∗) = ς = 1

N
D�. (60)

We perform the construction of above for the composition �2 ◦ �1. We first write both
quantum operations �1 and �2 in their Kraus forms

�1(ρ) =
M∑

α=1

AαρA†
α and �2(ρ) =

M∑
α=1

BαρB†
α (61)

where M = N2. Putting � = �2 ◦ �1 we consider its Kraus decomposition

Cα2α1 := Bα2Aα1 (62)

implying that K = N2 × N2 = N4. Consider a state ω21 acting on an extended tripartite
space HN ⊗ HM ⊗ HM = HN ⊗ E2 ⊗ E1

ω21 =
N∑

α1,α2,β1,β2=1

Cα2α1ρC
†
β2β1

⊗ |α2 ⊗ α1〉〈β2 ⊗ β1|

=
N∑

α1,α2,β1,β2=1

Bα2Aα1ρ
(
Bβ2Aβ1

)† ⊗ |α2 ⊗ α1〉〈β2 ⊗ β1| (63)

and let ρ21 be the restriction of ω21 to the ancilla E2E1 = HM ⊗ HM . We also compute the
restrictions ρ1 and ρ2 to the first and second ancilla. Assuming that ρ = ρ∗ = 1

N
11 we obtain

ρ12 = 1

N
D�2◦�1 (64)

ρ1 = TrHN ⊗E2ω21 = TrHN

1

N

N∑
α1,β1=1

Aα1 11A
†
β1

⊗ |α1〉〈β1| = 1

N
D�1 (65)

ρ2 = TrHN ⊗E1ω21 = TrHN

1

N

N∑
α2,β2=1

Bα2 11B
†
β2

⊗ |α2〉〈β2| = 1

N
D�2 . (66)

The last inequality holds because �1 is bistochastic. The upper bound of (52) now follows by
applying subadditivity of the entropy to the state ρ12, see [11, 3].

(ii) The lower bound is a special case of the bound in theorem 3. As �1 and �2 are
bistochastic

�1(ρ∗) = �2(ρ∗) = ρ∗ (67)

and the contribution of the terms within the square brackets vanishes. �

Corollary 1. Let � be a bistochastic map, then

S(�◦n) � nS(�). (68)

11
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It should be remarked that (68) is only meaningful when S(�) � ln N and n is not too
large as the entropy of a map is anyway bounded by 2 ln N .

In a similar way one may analyse properties of a concatenation of three consecutive
operations. Motivated by the inequality (51) for the entropy of the products of three bistochastic
matrices, we formulate its quantum mechanical counterpart.

Theorem 2 (Strong dynamical subadditivity for bistochastic quantum operations). Let �1,�2

and �3 be bistochastic quantum operations then their entropies satisfy the inequality

S(�3 ◦ �2 ◦ �1) + S(�2) � S(�3 ◦ �2) + S(�2 ◦ �1). (69)

This is equivalent to

S(σ3  σ2  σ1) + S(σ2) � S(σ3  σ2) + S(σ2  σ1), (70)

where σ1, σ2, σ3 ∈ DII
N2 .

Proof. Consider three bistochastic quantum operations �1,�2 and �3 acting in sequence on
the maximally mixed state ρ∗ ∈ MN . We repeat the construction of the Lindblad operator as
in (59) but now for three ancillas E1, E2 and E3 and obtain a density matrix ω321 acting on
HN ⊗E3 ⊗E2 ⊗E1. The restrictions of ω321 to some of the ancillas will be denoted as before
by ρ’s. We now write the strong subadditivity of quantum entropy for the system E3E2E1 [9]

S(ρ321) + S(ρ2) � S(ρ21) + S(ρ32). (71)

This yields, using the bistochasticity of �3 and �2,

S(ρ2) = S(�2) (72)

S(ρ21) = S(�2 ◦ �1) (73)

S(ρ32) = S(�3 ◦ �2) (74)

S(ρ321) = S(�3 ◦ �2 ◦ �1), (75)

which ends the proof. �

4.2. Generalization of dynamical subadditivity for stochastic maps

Results obtained in the previous section for bistochastic maps can be generalized for the case
of arbitrary stochastic maps.

Theorem 3 (Dynamical subadditivity for quantum operations). Let �1 and �2 be quantum
operations then their entropies satisfy the inequalities

S(�1) + �1 � S(�2 ◦ �1) � S(�1) + S(�2) + �2 (76)

where

�1 = S(�2 ◦ �1(ρ∗)) − S(�1(ρ∗)), (77)

�2 = S(σ̂ (�2,�1(ρ∗))) − S(�2). (78)

Proof. We repeat the proof of theorem 1 for the composition �2 ◦ �1 up to the construction
of the state ω on HN ⊗ E2 ⊗ E1, see (59). If the first operation is not bistochastic then the
restriction (66) has the form

ρ2 = TrHN ⊗E1ω21 = TrHN

N∑
α2,β2=1

Bα2�1(ρ∗)B
†
β2

⊗ |α2〉〈β2| = σ̂ (�2,�1(ρ∗)). (79)

12
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The restrictions ρ12 and ρ1 are the same as before. The entropy of σ̂ forms the first term of
�2 so subadditivity of the entropy of ρ12 implies the upper bound of (76).

To prove the lower bound consider (63). As an initial state let us take ρ∗ = 1
N

11 and purify
it by adding an additional party R of dimension N. This yields a pure state on R⊗HN ⊗E2⊗E1

defined by the normalized vector

1

N

N∑
i=1

N2∑
α1,α2=1

|i〉 ⊗ (
Bα2Aα1 |i〉

) ⊗ |α2〉 ⊗ |α1〉. (80)

We now use the strong subadditivity of the entropy denoting by ρR the restriction of this pure
state to the party R with similar notations for restrictions to other parties

S
(
ρRE2E1

)
+ S

(
ρE1

)
� S

(
ρRE1

)
+ S

(
ρE2E1

)
. (81)

Computing all the terms appearing in (81),

S
(
ρE1

) = S(�1) (82)

S
(
ρE2E1

) = S(�2 ◦ �1) (83)

S
(
ρRE1

) = S(�1(ρ∗)) (84)

S
(
ρRE2E1

) = S(�2 ◦ �1(ρ∗)) (85)

we arrive at the lower bound (76). �

The above inequalities formulated in the language of quantum maps obviously hold for
the composition of states which belong to the set (43) and its subset (44).

The above results may be linked to properties of coherent information defined by
Schumacher and Nielsen [14] as a function of exchange entropy S(σ̂ (�, ρ)):

I (�, ρ) = S(�(ρ)) − S(σ̂ (�, ρ)). (86)

Denoting by I1 the coherent information for the first operation, I1 = S(�1(ρ))−S(σ̂ (�1, ρ)),
and by I21 the analogous quantity for the concatenation I21 = S(�2(�1(ρ))) − S(σ̂ (�2 ◦
�1, ρ)), these authors proved [14] the quantum data processing inequality:

I21 � I1. (87)

This result implies the lower bound of (76).

4.3. Entropy of a product of stochastic matrices

Restricting our attention to the case of diagonal dynamical matrices we may analyse classical
analogues of the above results. In this case an application of a quantum map corresponds to
action of a stochastic matrix T on a classical probability vector P.

Theorem 3 implies that in the classical case for an arbitrary stochastic matrices T1 and T2

the following bounds hold,

H(T1) + [H(T2T1(P∗)) − H(T1(P∗))] � H(T2T1) � H(T1) + HT1P∗(T2) + H(T1P∗), (88)

where P∗ = 1
N

(1, ..., 1).
However, it is possible to obtain a stronger upper bound by using properties of strong

subadditivity of entropy. Inequality (71) is equivalent to an inequality for the exchange entropy,

S(σ̂ (�3 ◦ �2 ◦ �1, ρ∗)) + S(σ̂ (�2,�1(ρ∗)))�S(σ̂ (�2 ◦ �1, ρ∗)) + S(σ̂ (�3◦�2,�1(ρ∗))).
(89)
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By restriction to the classical case we obtain an inequality for three stochastic matrices
T1 = T1(�1), Ta = Ta(�2) and T2 = T2(�3) (note the notation chosen, which is convenient
to state the final result). This inequality is similar to the strong subadditivity, but different
weights for entropies are used. By substitution Ta = 11 we arrive with a result analogous
to (76).

Theorem 4. Let T1 and T2 be arbitrary stochastic matrices. Then the entropy of their product
is bounded by

H(T1) + δ1 � H(T2T1) � H(T2) + H(T1) + δ2 (90)

where

δ1 = H(T2T1(P∗)) − H(T1(P∗)), (91)

δ2 = HT1P∗(T2) − H(T2). (92)

This classical version of (76) valid for arbitrary stochastic matrices T1 and T2 can be
considered as a direct generalization of the result of Słomczyński [15] obtained for bistochastic
matrices. If both matrices T1 and T2 are bistochastic a complementary lower bound for the
entropy of their product holds H(T2) � H(T2T1), so in this case (50) can be rewritten in the
stronger symmetric form [19]

max({H(T1), H(T2)}) � min({H(T1T2), H(T2T1)}). (93)

5. Concluding remarks

In this paper we introduced the composition  between states on a bipartite system and derived
some basic properties. This composition reflects the concatenation of quantum operations
under the Jamiołkowski isomorphism. Next, we introduced a simple notion of entropy of
a quantum map in order to quantify its randomizing properties. We proved the property of
subadditivity for a composition of arbitrary bistochastic maps and found its generalization for
the case of stochastic quantum maps. The connection between maps and states allows us to
formulate these properties purely in terms of states and the  composition. A restriction to
the classical setting leads to a generalization of recently obtained bounds on the entropy of
a product of two bistochastic matrices [15] to the case of a product of arbitrary stochastic
matrices.

Recently [17], the concatenation of quantum maps has been investigated from the point
of view of divisibility. The authors consider the determinant of a super-operator instead of the
entropy and show that it is contractive with respect to composition.

A more detailed understanding of the randomizing properties of a quantum map should
be provided by constructing a Markov-like process. A possible track is to generate a state on
a spin half-chain in the spirit of finitely correlated states [6] and to consider the associated
dynamical entropy. This is a subject of future research.
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